
2023-06-14 01:34 1/11 Implementation

Werners Wiki - http://www.wernerflamme.name/

Implementation

This section describes how to implement a virtual mail solution. Not every little detail is covered, just
what is needed above and beyond the „standard“ installations.

Prerequisites

Here is the list of software, with their version numbers, that we have tested this configuration with:

Software

Red Hat Linux 6.2, 7.1, or 7.2
Postfix 1.1.3
OpenLDAP 2.0.21
Courier-IMAP 1.4.1
Procmail v3.22

Preparing the Unix System

To prepare the Unix system there are a few tasks you'll need to accomplish: create the vmail user and
decide where you're going to store the virtual users email.

Creating the vmail user is just like creating any other system account. You'll want to have a UID and a
GID that is used alone for vmail. You may also want to set its home directory to the location you've
selected for the storage area of the virtual users' email.

In our system we used vmail as the user and group name. We also decided to store our virtual users
email in /home/vmail.

The following example would work on a RedHat Linux distribution and result in a vmail user being
created and an empty mail storage directory being created.

% useradd -k -m -r -d /home/vmail vmail
% mkdir ~vmail/domains
% chown vmail.vmail ~vmail/domains

You will also need to create an account and two groups for postfix, but that is covered in Postfix's
INSTALL documentation.

OpenLDAP

You do not need to follow any special instructions for compiling and installing OpenLDAP, so please
consult its documentation for full instructions. For a production environment, you should read up on
how to run OpenLDAP as a non-root user, setup a chroot environment, and replication. This section

Last update: 2006-02-06 18:13 users:werner:mailserver2 http://www.wernerflamme.name/doku.php?id=users:werner:mailserver2

http://www.wernerflamme.name/ Printed on 2023-06-14 01:34

describes how to configure slapd for a single server, how to create the base tree structure, and how to
insert some basic data into the LDAP directory. Please consult Figure 2 as this is the LDAP tree we will
aim to setup.

Configuring slapd

All slapd configuration is in slapd.conf.

Adding Schemas

You need to make Courier's schema file available, so copy the file from authlib/authldap.schema
in the Courier distribution to /usr/local/etc/openldap/schema/courier.schema.
courier.schema depends on cosine.schema and nis.schema. Add these lines to slapd.conf:

include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/nis.schema
include /usr/local/etc/openldap/schema/courier.schema

Adding a Database Definition

Next, you need to set up a database definition. You can do this with the following lines:

database ldbm
directory /usr/local/var/openldap-ldbm
suffix "dc=myhosting,dc=example"

The database directive specifies the back-end type to use. You should use LDBM as the back-end
database. The directory directive specifies the path to the LDBM database. The suffix directive
specifies the root suffix for this database.

Creating the root User

The next few lines set up the „super user“ or „root“ account:

rootdn "cn=Manager,dc=myhosting,dc=example"
rootpw {SSHA}ra0sD47QP32ASAlaAhF8kgi+8Aflbgr7

The rootdn entry has complete access to the database, which is why the password is stored outside
the actual database. The password in rootpw should always be stored in hashed format. Do not store
the password in clear text. To convert the clear text password secret to a hashed format, use the
slappasswd command:

% slappasswd
New password: secret
Re-enter new password: secret

2023-06-14 01:34 3/11 Implementation

Werners Wiki - http://www.wernerflamme.name/

{SSHA}ra0sD47QP32ASAlaAhF8kgi+8Aflbgr7

Take the output from slappasswd, and copy that into slapd.conf, as we did above.

Defining Indexes

To speed up searches, you should create indexes for commonly searched attributes. In OpenLDAP,
you can not only choose which attributes to index, but you can choose which types of searches to
index on. For example, if you index the field mail, you have the option of creating indexes for
presence, equality, approximate, and/or substring searches. We want to create the following index
policy:

Create presence and equality indexes on objectClass.
Create equality and substring indexes on mail and cn.

To implement this policy, add these lines to slapd.conf:

index objectClass pres,eq
index mail,cn eq,sub

Setting up Access Control

The last part in slapd.conf is the access control. You can define your own policy, be here's the one
we've adopted:

The user can change any of their own attributes.
Anyone in the postmaster group of the domain may change any user's attributes in their
domain, including the password. This allows the postmaster to reset a users password if they
forget it.
Anonymous (non-authenticated) users may read all information, except the password attribute.

Access control statements are evaluated in order, so they should be defined from most specific to
most general. Access to the password attribute, userPassword, is the most specific in our case, and
hence it's specified first:

access to dn=".*,o=([^,]+),o=hosting,dc=myhosting,dc=example"
 attr=userPassword
 by self write
 by group/organizationalRole/roleOccupant=\
 "cn=postmaster,o=$1,o=hosting,dc=myhosting,dc=example" write
 by anonymous auth
 by * none

The access to line specifies what entries and attributes to which the following rules apply. The dn
regular expression matches any entry in a domain of our hosting tree, and attr limits these rules to
the userPassword attribute. Write access is granted to the user itself and anyone in the postmaster
group. Anonymous users may only access this field when trying to authenticate. For all other cases,
access is denied.

Last update: 2006-02-06 18:13 users:werner:mailserver2 http://www.wernerflamme.name/doku.php?id=users:werner:mailserver2

http://www.wernerflamme.name/ Printed on 2023-06-14 01:34

Next, all other attributes to entries in a domain's tree are specified:

access to dn=".*,o=([^,]+),o=hosting,dc=myhosting,dc=example"
 by self write
 by group/organizationalRole/roleOccupant=\
 "cn=postmaster,o=$1,o=hosting,dc=myhosting,dc=example" write
 by * read

This access to line is very similar the previous one, except that there is no attr specification. Hence,
this matches all other attributes other than userPassword. Again, write access is granted to the user
and anyone in the postmaster group. Everyone is granted read access.

Finally, we provide read access to all other elements in the database:

access to *
 by * read

Creating the Directory Tree

Now that slapd is configured, it's time to start adding data to the LDAP directory. We will use the
command line tools that come with OpenLDAP and create LDIF files to modify the directory.

Creating the Base Directory

The first step is to create a base tree structure with our root node, the hosting organization, and an
entry for the rootdn. Create a file called base.ldif with the following contents:

dn: dc=myhosting, dc=example
objectClass: top

dn: cn=Manager, dc=myhosting, dc=example
objectClass: top
objectClass: organizationalRole
cn: Manager

dn: o=hosting, dc=myhosting, dc=example
objectClass: top
objectClass: organization
o: hosting

Now use ldapadd, binding as the root user, to add this LDIF:

$ ldapadd -x -D "cn=Manager,dc=myhosting,dc=example" -w secret -f base.ldif
adding new entry "dc=myhosting, dc=example"
adding new entry "cn=Manager, dc=myhosting, dc=example"
adding new entry "o=hosting, dc=myhosting, dc=example"

2023-06-14 01:34 5/11 Implementation

Werners Wiki - http://www.wernerflamme.name/

Adding a Domain

Domains may now be added under the hosting tree. Each domain needs to have postmaster and
abuse entries at a minimum. To create a tree for domain1.example, create a file called
domain1.example.ldif with the following contents:

dn: o=domain1.example, o=hosting, dc=myhosting, dc=example
objectClass: top
objectClass: organization
o: domain1.example

dn: cn=postmaster, o=domain1.example, o=hosting, dc=myhosting, dc=example
objectClass: top
objectClass: organizationalRole
objectClass: CourierMailAlias
cn: postmaster
mail: postmaster@domain1.example
maildrop: postmaster

dn: mail=abuse@domain1.example, o=domain1.example, o=hosting, dc=myhosting,
 dc=example
objectClass: top
objectClass: CourierMailAlias
mail: abuse@domain1.example
maildrop: abuse

Notice that the maildrop attributes are local email accounts and will forward to the postmaster and
abuse accounts in /etc/aliases. There are also no users in the postmaster role, so only the root
user can create accounts at the moment. Add this domain with the following command:

$ ldapadd -x -D "cn=Manager,dc=myhosting,dc=example" -w secret \
 -f domain1.example.ldif
adding new entry "o=domain1.example, o=hosting, dc=myhosting, dc=example"
adding new entry "cn=postmaster, o=domain1.example, o=hosting, dc=myhosting,
dc=example"

Adding a User

Now, let's add a user with an email user1@domain1.example. Let's also grant this user postmaster
privileges for domain1.example. Create a user1.domain1.example.ldif with the following
contents:

dn: mail=user1@domain1.example, o=domain1.example, o=hosting, dc=myhosting,
 dc=example
objectClass: top
objectClass: CourierMailAccount
mail: user1@domain1.example
homeDirectory: /home/vmail/domains
uidNumber: 101

mailto:user1@domain1.example

Last update: 2006-02-06 18:13 users:werner:mailserver2 http://www.wernerflamme.name/doku.php?id=users:werner:mailserver2

http://www.wernerflamme.name/ Printed on 2023-06-14 01:34

gidNumber: 101
mailbox: domain1.example/user1

dn: cn=postmaster, o=domain1.example, o=hosting, dc=myhosting, dc=example
changetype: modify
add: roleOccupant
roleOccupant: mail=user1@domain1.example, o=domain1.example, o=hosting,
 dc=myhosting, dc=example

The first section adds a new entry for the user. The home directory and mailbox point to the physical
mailbox on the file system. The uidNumber and gidNumber attributes are required, but not used, so
they are filled in with dummy values of 101. The second section modifies the postmaster entry by
adding a roleOccupant attribute with the DN of user1@domain1.example. Let's create this user:

$ ldapadd -x -D "cn=Manager,dc=myhosting,dc=example" -w secret \
 -f user1.domain1.example.ldif
adding new entry "mail=user1@domain1.example, o=domain1.example, o=hosting,
dc=myhosting,dc=example"
modifying entry "cn=postmaster, o=domain1.example, o=hosting, dc=myhosting,
dc=example"

The user does not have a password yet, so even though he has been granted postmaster privileges,
he cannot be authenticated. Use the ldappasswd command to set the initial password to user1:

$ ldappasswd -x -D "$DN" -w $PW -s user1 \
 "mail=user1@domain1.example, o=domain1.example, o=hosting, dc=myhosting,
dc=example"
Result: Success (0)

Other domains and users may be added with similar LDIF files. Creating LDIF files by hand can be
cumbersome and error prone. We will talk about alternatives for administration in Section 5.

Postfix

We'll only cover the sections of Postfix that pertain to the mail hosting. To deal with other parts of
Postfix setup, please visit the Postfix web page[14]. However, we do recommend that you set up as
much of Postfix as you can to run in a chroot environment. In our experience, this means all of the
Postfix daemons except pipe, local, and virtual.

Compiling Postfix with LDAP

This is covered fully in README_FILES/LDAP_README[15] that comes with the Postfix source. We'll
just cover it briefly here.

Download the Postfix source and untar it. You need to rebuild the Postfix Makefiles to be aware of
LDAP and link against it. To do this, execute the following command.

2023-06-14 01:34 7/11 Implementation

Werners Wiki - http://www.wernerflamme.name/

% make makefiles CCARGS="-I/usr/local/include -DHAS_LDAP" \
AUXLIBS="-L/usr/local/lib -lldap -L/usr/local/lib -llber"

At this point, follow the normal Postfix compiling and installing instructions as documented in its
INSTALL file.

Configuring Postfix

While configuring Postfix for this task, we'll be mostly concerned with /etc/postfix/main.cf.

For most of the Postfix configuration, you will configure this in a way that makes the most sense for
your site and you can follow the documentation contained in the Postfix source or on the Postfix web
page[14]. In this document, we'll talk about the settings that are unique to and/or affected by this
setup. If any of the configuration examples shown below aren't explicitly attributed to a specific file,
assume they would be found in main.cf.

Procmail

Having Postfix use procmail for delivery is easy. All you need to do is define the mailbox_command
parameter in main.cf.

mailbox_command = /usr/bin/procmail

The transport map

The transport table maps domains to message delivery transports (as specified in
/etc/postfix/master.cf) and/or relay hosts. For our virtual domains, we want to map them to
the virtual delivery agent that comes with Postfix. A transport table could look something like this.

domain1.example virtual:
anotherdomain.example virtual:
domain2.example virtual:

After making your transport table in plain text, you need to make it into a binary DB file. To do this,
you run the postmap program against the text file.

% cd /etc/postfix
% postmap transport

postmap can create three different database files: btree, dbm, and hash. For more information on
this, see the postmap(1) man page. It should be noted that hash is the default on Linux systems.

At this point, you need to tell Postfix that there is a transport table and where to find it. You also need
to let Postfix know that we accept mail for those domains. This is done through the transport_maps
and mydestination directives in main.cf.

Last update: 2006-02-06 18:13 users:werner:mailserver2 http://www.wernerflamme.name/doku.php?id=users:werner:mailserver2

http://www.wernerflamme.name/ Printed on 2023-06-14 01:34

transport_maps = hash:/etc/postfix/transport
mydestination = $myhostname, localhost.$mydomain, $mydomain, $transport_maps

This information could be stored in LDAP as well, in theory. However, we aren't aware of an object
class that fits our needs here. For now, we feel safer doing it as a map file.

Configuring LDAP sources

You can easily define multiple LDAP sources. LDAP source parameters are documented in
README_FILES/LDAP_README[15]. The parameter names follow the pattern of ldapsource_parameter.
The LDAP source name is defined when it is first used. In main.cf, you'll need one LDAP source
definition per each lookup.

Aliases

aliases_server_host = localhost
aliases_search_base = o=hosting,dc=myhosting,dc=example
aliases_query_filter = (&(mail=%s)(objectClass=CourierMailAlias))
aliases_result_attribute = maildrop
aliases_bind = no
aliases_cache = yes

This first LDAP source definition is for virtual aliases. We've named this LDAP source aliases. In our
configuration, as specified by the server_host line, our LDAP server is running on localhost. Our
search base is the top of the hosting subtree we defined in our LDAP server. We're querying for items
where the mail elements matches the email recipient as well as items that are of the courierMailAlias
object class. The destination of the alias is the maildrop attribute. We do not want to bind to the LDAP
server, we just want to do an anonymous lookup. Also, to help us over performance humps, we'll
cache the results. The default cache has a life time of 30 seconds and has a size of 32K.

Accounts

accounts_server_host = localhost
accounts_search_base = o=hosting,dc=myhosting,dc=example
accounts_query_filter = (&(mail=%s)(objectClass=CourierMailAccount))
accounts_result_attribute = mailbox
accounts_cache = yes
accounts_bind = no

The accounts source is very similar to our aliases source. The big difference here is that we're looking
for entries that have an object class of courierMailAccount and we're interested in the mailbox
attribute of the resulting match.

The virtual alias maps

2023-06-14 01:34 9/11 Implementation

Werners Wiki - http://www.wernerflamme.name/

Now that the aliases LDAP source is defined, we need to let Postfix know to use it. This is taken care
of using the virtual_maps parameter in main.cf

virtual_maps = ldap:alias

The virtual accounts

Telling Postfix about the virtual accounts is a bit trickier than the aliases. This is due to the fact that
we need to define a lot of extra information about the virtual mail storage.

For this example, we assume that there is a vmail Unix account created that has a UID of 101, a GID
of 101, and its home directory is /home/vmail. We will use the home directory of the vmail user as
the place where we store our virtual mail repository.

virtual_mailbox_base = /home/vmail/domains
virtual_mailbox_maps = ldap:accounts
virtual_minimum_uid = 101
virtual_uid_maps = static:101
virtual_gid_maps = static:101

Most of the above is pretty straight forward, except for virtual_minimum_uid,
virtual_uid_maps, and virtual_gid_maps. The Postfix documentation states
„[virtual_minimum_uid] specifies a minimum UID that will be accepted as a return from a
virtual_uid_maps lookup. Returned values less than this will be rejected, and the message will be
deferred.“[16] Since we have decided that all mail for virtual accounts will be stored using the vmail
Unix account, we set the virtual_minimum_uid to be the UID of vmail. Also, we set the
virtual_uid_maps and virtual_gid_maps to a special static map and hard code it to the UID
and GID of the vmail user. All of the parameters shown here are fully documented in
README_FILES/VIRTUAL_README[16] that comes with the Postfix source.

We also need to edit the local_recipient_maps parameter to look at the
virtual_mailbox_maps so Postfix knows who is a user our mail server supports and who is not.
The main reason we do this is so Postfix can reject mail for unknown users.

local_recipient_maps = $alias_maps unix:passwd.byname $virtual_mailbox_maps

Courier

You do not need to follow any special instructions for installing Courier, so please see its
documentation for full instructions. It should auto-detect LDAP and build it in. You should seriously
consider passing the –enable-workarounds-for-imap-client-bugs option to ./configure,
otherwise Netscape mail users may have trouble interacting with your server. Yeah, this bends the
IMAP protocol a little bit, but it's better to have happy users than a perfect protocol with unhappy
users.

Last update: 2006-02-06 18:13 users:werner:mailserver2 http://www.wernerflamme.name/doku.php?id=users:werner:mailserver2

http://www.wernerflamme.name/ Printed on 2023-06-14 01:34

Configuring the Authentication Daemon

Courier uses an authentication daemon to keep authentication separate from the other parts of the
system. We need to configure it so that a valid email user is either found in LDAP or in PAM. You
specify this in authdaemonrc using the authmodulelist parameter:

authmodulelist="authldap authpam"

Configuring LDAP

All LDAP parameters are in authldaprc. Most parameters are self explanatory. To use the Courier
schema, you actually have a few modifications to make, though. You also need to map all virtual
users to the vmail account. Here is a summary of the updates you need to make to authldaprc:

LDAP_GLOB_UID vmail
LDAP_GLOB_GID vmail
LDAP_HOMEDIR homeDirectory
LDAP_MAILDIR mailbox
LDAP_CRYPTPW userPassword

Three other settings we must concern ourselves with is LDAP_AUTHBIND, LDAP_BINDDN, and
LDAP_BINDPW. These settings relate to authenicating the user. LDAP_AUTHBIND is mutually
exclusive with LDAP_BINDDN and LDAP_BINDPW. We recommend using LDAP_AUTHBIND. A
comment in authldaprc mentions a memory leak in OpenLDAP when using LDAP_AUTHBIND, but it
has been fixed in OpenLDAP version 2.0.19.

If you use LDAP_BINDDN and LDAP_BINDPW, you are limited to the crypt, MD5, and SHA algorithms
for passwords. SMD5 and SSHA are not available. Also, you also must put the root LDAP password in
clear text in authldaprc when defining LDAP_BINDPW. There are security issues with putting the
root LDAP password in clear text, so you should defintely use LDAP_AUTHBIND if you can.

The last change you need to do is to enable the IMAP server by setting the IMAPDSTART parameter to
YES. You should now be able to use the courier-imap.sysvinit startup script to start and stop
the IMAP daemon.

Setting up IMAP over SSL

If you had OpenSSL installed when compiling Courier, you will have support for IMAP over SSL. Courier
can either do SSL using the STARTTLS extension or use a separate port for SSL connections. We
prefer not to use STARTTLS, and have separate ports for SSL and non-SSL connections. You also need
to give Courier the full path to your certificate file. And finally, you need to enable the SSL daemon, as
it is off by default. Here is how we modified our imapd-ssl:

IMAPDSSLSTART=YES
IMAPDSTARTTLS=NO
TLS_CERTFILE=/usr/local/share/imapd.pem

2023-06-14 01:34 11/11 Implementation

Werners Wiki - http://www.wernerflamme.name/

SquirrelMail

Since SquirrelMail works directly against IMAP it does exactly what we want it to out of the box.
Consider it to be the same as any other IMAP client. There is nothing special about SquirrelMail's
setup in this configuration, just follow its install documentation.

We recommend that you set up SquirrelMail on a webserver that is running SSL. This will allow you to
make sure that passwords are not going across in the clear.

From:
http://www.wernerflamme.name/ - Werners Wiki

Permanent link:
http://www.wernerflamme.name/doku.php?id=users:werner:mailserver2

Last update: 2006-02-06 18:13

http://www.wernerflamme.name/
http://www.wernerflamme.name/doku.php?id=users:werner:mailserver2

	Implementation
	Prerequisites
	Preparing the Unix System
	OpenLDAP
	Configuring slapd
	Adding Schemas
	Adding a Database Definition
	Creating the root User
	Defining Indexes
	Setting up Access Control

	Creating the Directory Tree
	Creating the Base Directory
	Adding a Domain
	Adding a User

	Postfix
	Compiling Postfix with LDAP
	Configuring Postfix
	Procmail
	The transport map
	Configuring LDAP sources
	Aliases
	Accounts

	The virtual alias maps
	The virtual accounts

	Courier
	Configuring the Authentication Daemon
	Configuring LDAP
	Setting up IMAP over SSL

	SquirrelMail

